

International Journal of Engineering Research ISSN:2348-4039

& Management Technology

Email:editor@ijermt.org November-2017 Volume 4, Issue-6 www.ijermt.org

Agile Software Quality of Design Risk Assessment Using Fuzzy logic

Anand Kumar Rai,

Dept. of Computer Science

Mumtaz Post Graduate College,

Lucknow

Karuna Shankar Awasthi, Santosh Kumar and

Laxmi Shankar Awasthi

Dept. of Computer Science Lucknow

Public College of Professional Studies

Lucknow

ABSTRACT:

Agile software development advocates less documentation and less design but the software design cannot be

ignored completely. Software Design is the model that a development team builds and maintains. High

quality design makes for an application that is easy to understand and change as new requirements are

discovered. Traditionally, the team has one shot to get the design right and then it degrades over time as it is

patched over time. Agile practices, however, give an alternative; using practices like test driven development

and refactoring teams are now able to continuously improve the design of their system. Many organizations

are shifting towards agile software development techniques as compare to heavy weight practices. But in

this scenario, still there are issues related with the quality.

KEYWORDS: Agile Software, Fuzzy Logic, Risk Assessment, Quality, MATLAB.

1. INTRODUCTION

Agile methodologies have played a crucial role in software development success in recent years as compared

to heavy weight methodologies [6][7]. Because many organizations report the inability of traditional

development methods to handle the scaling as well as increased software complexity during software

delivery and it affects the quality aspects so there is an urgent need to respond quickly to these functions and

problems so that projects can achieve their goals in terms of cost, time and quality. As our research aim is to

look for quality factors of agile software development, this paper has put more stress on quality metrics and

to analyze them in order to provide better outcomes [9][10]. In traditional development techniques like

waterfall model, spiral model, incremental model etc., at the end of every phase, there were reviews like

design review, code review and inspections so that errors can be identified as early as possible and can be

corrected to improve the quality of product. Now, many organizations have shifted from traditional software

development to modern development, in this case traditional quality assurance techniques are not suitable

for modern development as modern development have goals which are iteration oriented and traditional

development was phase oriented.

Agile software development gives more stress on collocation of teams as well as face to face communication

for iterations & daily team activities. So, there is an urgent need to collaborate the quality assurance

activities or techniques with daily team activities so that product quality can be improved. Many large

organizations are adopting agile methodologies because these methodologies support flexibility, welcome

changes at any stage, light documentation and the challenge here is for large organizations to achieve these

features as well as to follow quality assurance practices so that product quality will not be at stake.

Copyright@ijermt.org Page 55

mailto:editor@ijermt.org
http://www.ijermt.org/
mailto:Copyright@ijermt.org

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

www.ijermt.org Email:editor@ijermt.org November-2017 Volume 4, Issue-6

Copyright@ijermt.org Page 56

2. BACKGROUND

Quality defined as high levels of user satisfaction and low defect levels, often associated with low

complexity. The quality of software is assessed by a number of variables. These variables can be divided

into external and internal quality criteria. External quality is what a user experiences when running the

software in its operational mode. Internal quality refers to aspects that are code-dependent, and that are not

visible to the end-user. External quality is critical to the user; while internal quality is meaningful to the

developer only [1][2]. Table 1 shows a version of the software quality model [3]. This model categorizes 14

quality factors in three steps of the development life cycle: Quality of design, Quality of performance,

Quality of adaptation. This model provides a superior structure of reference to recognize software quality.

We used this model throughout the study. In this paper we have shown that how to enhance the criteria of

quality factors using agile techniques.

3. DISCUSSION

Quality of design for the agile software risk indicators are identified and shown in given Table 1.0 with

description. These three risk indicators need to be managing for the good quality of design. On the basis of

literature review and on basis of the agile expert’s opinion eight rule bases are created. These three risk

indicators hold the qualitative values in nature like low, medium and high. For the precise risk evaluation we

need to quantification of these values, for this purpose we use the MATLAB simulator Fuzzy Inference

System to resolve this problem. In this study qualitative values of risk indicators are quantified through the

fuzzification process which is shown in Figure 2. The qualitative value low ranges between 0.0-0.4, medium

ranges between 0.1-0.9 and high ranges between 0.6-1.0 with its membership value between 0-1, which is

well elaborated in given figure.

Figure 3, shows the relationship between input indicators value, fuzzy rule base and output value. Table 2.0

shows the rule base which is further used in fuzzy inference system for the fuzzy rule base creation. Figure 4,

shows the fuzzy inference rules, on the basis of this rule the rule view is generated as an output which is

shown in Figure 5. In this figure vertical lines are appearing with each input factor. The input value can be

fixed by this line. This line gives the crisp value of the input factors; finally accordingly the rule base output

crisp value is evaluated. We collected the 10 input/output samples from the rule view, which is shown in

Table 3.0. Figure 6, elaborated the impact on quality of design on the basis of risk indicators crisp value.

http://www.ijermt.org/
mailto:editor@ijermt.org
mailto:Copyright@ijermt.org

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

www.ijermt.org Email:editor@ijermt.org November-2017 Volume 4, Issue-6

Copyright@ijermt.org Page 57

http://www.ijermt.org/
mailto:editor@ijermt.org
mailto:Copyright@ijermt.org

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

www.ijermt.org Email:editor@ijermt.org November-2017 Volume 4, Issue-6

Copyright@ijermt.org Page 58

Table 3.0 Quality of Design and its Factors crisp value

CRT MNT VRF QD

.109 .103 .142 .155

.109 .503 .507 .500

.242 .637 .301 .440

.381 .797 .646 .500

.679 .657 .652 .522

.738 .710 .745 .563

.818 .770 .838 .672

.911 .850 .904 .856

.957 .930 .977 .866

1.00 1.00 1.00 .870

http://www.ijermt.org/
mailto:editor@ijermt.org
mailto:Copyright@ijermt.org

International Journal of Engineering Research & Management Technology ISSN: 2348-4039

www.ijermt.org Email:editor@ijermt.org November-2017 Volume 4, Issue-6

Copyright@ijermt.org Page 59

4. CONCLUSION & FUTURE WORK

In this study the agile software quality of design risk evaluated based on the 3 risk indicators identified and

used as input to fuzzy logic Matlab simulator based model to assess the quality of design risk. In this

research qualitative data of the agile software design risk converted into the quantitative form using the

Fuzzy Inference System. Quantitative data helps in assessing the risk indicators precise values to assess the

agile software design risk. We found that Correctness risk is highly sensitive.

In future few more risk indicators can be identified and more rule base can be created for more precise risk

evaluation. Further AI based tools can be applied to automate the agile software design risk assessment.

5. REFERENCE

[1] Abrahamsson, P., Conboy, K., Wang, X., 2009. ‘Lots done, more to do’: the currentstate of agile systems

development research. European Journal of InformationSystems 18, 281–284.

[2] Abrahamsson, P., Salo, O., Ronkainen, J., Warsta, J., 2002. Agile software developmentmethods: review
and analysis. VTT Technical report, p. 107.

[3] Acuna, S.T., Gomez, M., Juristo, N., 2009. How do personality, team processes andtask characteristics

relate to job satisfaction and software quality? Informationand Software Technology 51, 627–639.

[4] Agarwal, A., Shankar, R., Tiwari, M.K., 2006. Modeling the metrics of lean, agile andleagile supply

chain: an ANP-based approach. European Journal of OperationalResearch 173, 211–225.

[5] Ågerfalk, P., Fitzgerald, B., Slaughter, S., 2009. Introduction to the special issue:flexible and distributed

information systems development: state of the art andresearch challenges. Information Systems Research 20,

317.

[6] Arisholm, E., Gallis, H., Dyba, T., Sjoberg, D.I.K., 2007. Evaluating pair programmingwith respect to

system complexity and programmer expertise. IEEE Transactionson Software Engineering 33, 65–86.

[7] Balijepally, V., Mahapatra, R., Nerur, S., Price, K.H., 2009. Are two heads better thanone for software

development? The productivity paradox of pair programming.MIS Quarterly 33, 91–118.

[8] Bellini, E., Canfora, G., Garcia, F., Piattini, M., Visaggio, C.A., 2005. Pair designingas practice for

enforcing and diffusing design knowledge. Journal of SoftwareMaintenance and Evolution-Research and

Practice 17, 401–423.

[9] Boehm, B., 2002. Get ready for agile methods with care. IEEE Computer 35, 64–69.

[10] Chan, F.K.Y., Thong, J.Y.L., 2009. Acceptance of agile methodologies: a critical reviewand conceptual

framework. Decision Support Systems 46, 803–814.

[11] Choi, K.S., Deek, F.P., Im, I., 2008. Exploring the underlying aspects of pair pro-gramming: the impact

of personality. Information and Software Technology 50,1114–1126.

http://www.ijermt.org/
mailto:editor@ijermt.org
mailto:Copyright@ijermt.org

